AM 148 Lecture 4

Steven Reeves

University of California, Santa Cruz
sireeves@ucsc.edu

April 16, 2020

Overview

(1) Precision Support
(2) Matrix Operations

- Matrix Multiplication
- Shared Memory MatMul
(3) Stencil
- Numerical Integration

Floats and Precision

- Floating point numbers are a representation of real numbers using rational numbers.

Floats and Precision

- Floating point numbers are a representation of real numbers using rational numbers.
- Floats have a precision type

Floats and Precision

- Floating point numbers are a representation of real numbers using rational numbers.
- Floats have a precision type
- half precision, 16 bit floats ~ 4 digits
- single precision, 32 bit floats ~ 8 digits
- double precision, 64 bit float ~ 16 digits
- Defined by the IEEE 754 standard

What are floats?

Computers at their current state know finite things.

- Real numbers can be irrational

What are floats?

Computers at their current state know finite things.

- Real numbers can be irrational
- Computers approximate real numbers using floats

What are floats?

Computers at their current state know finite things.

- Real numbers can be irrational
- Computers approximate real numbers using floats
- Floats are a combination of an exponent and mantissa

Pi by floats

To illustrate this concept, let's consider π - $\pi \neq 3.14$

Pi by floats

To illustrate this concept, let's consider π

- $\pi \neq 3.14$
- $\pi=3.141593653589 \ldots$

$$
\pi=\pi_{\text {mach }}+\mathcal{O}\left(\epsilon_{\text {mach }}\right)
$$

Pi by floats

To illustrate this concept, let's consider π

- $\pi \neq 3.14$
- $\pi=3.141593653589 \ldots$

$$
\pi=\pi_{\text {mach }}+\mathcal{O}\left(\epsilon_{\text {mach }}\right)
$$

- $\epsilon_{\text {mach }}$ is the precision cutoff.
$\pi_{\text {mach }}$
- Half: $\pi_{16}=3.141$

$\pi_{\text {mach }}$

- Half: $\pi_{16}=3.141$
- Single: $\pi_{32}=3.14159265$

$\pi_{\text {mach }}$

- Half: $\pi_{16}=3.141$
- Single: $\pi_{32}=3.14159265$
- Double: $\pi_{64}=3.141592653589793$

Exonent and Mantissa

Formally, the computer stores floating point numbers as a mantissa and exponent, in binary. We'll use base ten:

$$
3.141=\underbrace{3141}_{\text {mantissa }} \times 10 \overbrace{-3}^{\text {exponent }}
$$

Exonent and Mantissa

Formally, the computer stores floating point numbers as a mantissa and exponent, in binary. We'll use base ten:

$$
3.141=\underbrace{3141}_{\text {mantissa }} \times 10 \overbrace{-3}^{\text {exponent }}
$$

There's also a bit for sign as well.

Half Precision Floats

In $\mathrm{C}++$ we can use:
\#include <half.cpp>
int main() $\{$
using half_float: :half;
half pi(3.141);
std::cout<<"This is 16 bit pi!"<<pi<<std::endl;

Half Precision Floats

In C++ we can use:

```
#include <half.cpp>
int main(){
    using half_float::half;
    half pi(3.141);
    std::cout<<"This is 16 bit pi!"<<pi<<std::endl;
```

In CUDA we can also use the cuda_fp16.h header. With this we can use half natively. Note only works with CUDA 7.5 or newer.

Single and Double Precision

- Single and Double precision run natively in CUDA C/C++.

Single and Double Precision

- Single and Double precision run natively in CUDA C/C++.
- Single precision is most performant on most GPUs

Single and Double Precision

- Single and Double precision run natively in CUDA C/C++.
- Single precision is most performant on most GPUs
- Double precision can run on any GPU, but is only performant on some.

Precision by Nvidia Brand

	Half	Single	Double
Tesla	Pascal or Higher	All	$1 / 2$ of Single
Geforce	Not Performant	All	$1 / 32$ of Single
Quadro	Not Performant	All	$1 / 32$ of Single
Titan	Volta	All	Some Architectures

- Matrix Addtion?
- Matrix Addtion? Done!
- Matrix Transpose?
- Matrix Addtion?

Done!

- Matrix Transpose?

Homework!

- Matrix Multiplication?
- Matrix Addtion? Done!
- Matrix Transpose?

Homework!

- Matrix Multiplication?

This chapter!

Matrix Multiplication

Given two matrices A, B
$\mathbf{A} \in \mathbb{R}^{N \times M}$
$\mathbf{B} \in \mathbb{R}^{M \times L}$ then

$$
\mathbf{C}=\mathbf{A B}
$$

and $\mathbf{C} \in \mathbb{R}^{N \times L}$.

Sequential Matrix Multiply

Algorithm 1: A sequential Matrix multiply
Data: A, B
Result: C
1 for $i=0 \rightarrow N-1$ do
2 for $j=0 \rightarrow L-1$ do

$$
\text { for } k=0 \rightarrow M-1 \text { do }
$$

$$
c_{i j}=0 ;
$$

$$
c_{i j}+=a_{i k} b_{k j}
$$

end

end

8 end

Naive Kernel

- Code Kernel

Naive Kernel

- Code Kernel
- This implementation draws from global memory significantly

Naive Kernel

- Code Kernel
- This implementation draws from global memory significantly
- Sub-optimal on GPUs

Psycho Kernel

- Use Shared Memory
- More matrix class functions
- Tiling

Shared Memory Matrix Multiplication

- specialized __device_- functions
- Shared Memory Kernel

Worth it?

	Serial	OpenMP	Naive CUDA	Shared Mem CUDA
$N=32$	1.72×10^{-4}	2.102×10^{-3}	2.2×10^{-5}	1.1×10^{-5}
$N=64$	6.15×10^{-4}	2.19×10^{-3}	2.6×10^{-5}	1.4×10^{-5}
$N=128$	6.39×10^{-3}	3.19×10^{-3}	3.9×10^{-5}	1.6×10^{-5}
$N=256$	5.51×10^{-2}	1.96×10^{-2}	1.43×10^{-4}	7.4×10^{-5}
$N=512$	5.35×10^{-1}	1.58×10^{-1}	7.35×10^{-4}	2.24×10^{-4}
$N=1024$	3.60713	1.52667	5.794×10^{-3}	1.545×10^{-3}
$N=2048$	111.053	38.3684	4.6233×10^{-2}	1.2963×10^{-2}
$N=4096$	-	-	3.45668×10^{-1}	7.2939×10^{-2}
$N=8192$	-	-	4.16188	5.92996×10^{-1}

Stencil

- Class of algorithms built upon gather and map.

Stencil

- Class of algorithms built upon gather and map.
- Data is updated using a fixed set of input points, stencil

Stencil

- Class of algorithms built upon gather and map.
- Data is updated using a fixed set of input points, stencil
- Generally the stencil is much smaller than the over arching data set.

Stencil

- Class of algorithms built upon gather and map.
- Data is updated using a fixed set of input points, stencil
- Generally the stencil is much smaller than the over arching data set.
- Close to embarassingly parallel.

Figure: 7 point Von-Neumann Stencil

Applications of Stencil

- Numerical Partial Differential Equations

Applications of Stencil

- Numerical Partial Differential Equations
- Convolutions (Convolutional Neural Networks)

Applications of Stencil

- Numerical Partial Differential Equations
- Convolutions (Convolutional Neural Networks)
- Image Filters - "Gaussian Blur"

Applications of Stencil

- Numerical Partial Differential Equations
- Convolutions (Convolutional Neural Networks)
- Image Filters - "Gaussian Blur"
- Many more!

Numerical Integration

- Some PDEs are difficult to solve analytically

Numerical Integration

- Some PDEs are difficult to solve analytically
- Numerical Integration Schemes were developed to tackle this problem

Numerical Integration

- Some PDEs are difficult to solve analytically
- Numerical Integration Schemes were developed to tackle this problem
- Often these schemes follow the Stencil primitive.

1D Heat Equation

To illustrate the use of stencil we will solve the 1D Heat Equation

$$
\frac{\partial f}{\partial t}-\kappa \frac{\partial^{2} f}{\partial x^{2}}=0
$$

1D Heat Equation

To illustrate the use of stencil we will solve the 1D Heat Equation

$$
\frac{\partial f}{\partial t}-\kappa \frac{\partial^{2} f}{\partial x^{2}}=0
$$

- Models the heat distribution in a uniform rod
- Requires Initial Condition
- Requires Boundary Conditions

Finite Difference Schemes

$$
\frac{\partial f}{\partial t}=\lim _{\delta t \rightarrow 0} \frac{f(t+\delta t)-f(t)}{\delta t} \approx \frac{f(t+\delta t)-f(t)}{\delta t}
$$

Finite Difference Schemes

$$
\begin{aligned}
\frac{\partial f}{\partial t}= & \lim _{\delta t \rightarrow 0} \frac{f(t+\delta t)-f(t)}{\delta t} \approx \frac{f(t+\delta t)-f(t)}{\delta t} \\
\frac{\partial^{2} f}{\partial x^{2}} & =\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-2 f(x)+f(x-\delta x)}{\delta x^{2}} \\
& \approx \frac{f(x+\delta x)-2 f(x)+f(x-\delta x)}{\delta x^{2}}
\end{aligned}
$$

Forward Time Central Space

$$
\frac{\partial f}{\partial t}-\kappa \frac{\partial^{2} f}{\partial x^{2}}=0
$$

Forward Time Central Space

$$
\begin{gathered}
\frac{\partial f}{\partial t}-\kappa \frac{\partial^{2} f}{\partial x^{2}}=0 \\
\Longrightarrow \\
\frac{f_{i}^{n+1}-f_{i}^{n}}{\delta t}-\kappa \frac{f_{i+1}^{n}-2 f_{i}^{n}+f_{i-1}^{n}}{\delta x^{2}}=0
\end{gathered}
$$

Forward Time Central Space

$$
\begin{gathered}
\frac{\partial f}{\partial t}-\kappa \frac{\partial^{2} f}{\partial x^{2}}=0 \\
\Longrightarrow \\
\frac{f_{i}^{n+1}-f_{i}^{n}}{\delta t}-\kappa \frac{f_{i+1}^{n}-2 f_{i}^{n}+f_{i-1}^{n}}{\delta x^{2}}=0 \\
\Longrightarrow \\
f_{i}^{n+1}=f_{i}^{n}+\frac{\kappa \delta t}{\delta x^{2}}\left(f_{i+1}^{n}-2 f_{i}^{n}+f_{i-1}^{n}\right)
\end{gathered}
$$

FTCS Stencil

Boundary Conditions

Suppose that we're modeling a uniform rod of length L. Further we suppose that the ends are perflectly insolated. In this case:

- The Heat Flux through the ends of the rod is 0

$$
\left.\frac{\partial f}{\partial x}\right|_{x=-L / 2, L / 2}=0
$$

Boundary Conditions

Suppose that we're modeling a uniform rod of length L. Further we suppose that the ends are perflectly insolated. In this case:

- The Heat Flux through the ends of the rod is 0

$$
\left.\frac{\partial f}{\partial x}\right|_{x=-L / 2, L / 2}=0
$$

- $f_{0}^{n}=f_{1}^{n}$
- $f_{M-1}^{n}=f_{M-2}^{n}$

Numerical Stability

There is a condition on δx and δt in order for the FTCS algorithm to remain bounded.

$$
\frac{\kappa \delta t}{\delta x^{2}} \leq \frac{1}{2}
$$

Example

- Let $L=2$
- Using $M=128$ data points over $x \in[-1,1]$
- And a Guassian Heat profile

$$
f(0, x)=\frac{1}{2} \exp \left(-\frac{1}{2} x^{2}\right)
$$

Example Code

