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Floats and Precision

Floating point numbers are a representation of real numbers
using rational numbers.

Floats have a precision type

half precision, 16 bit floats ∼ 4 digits
single precision, 32 bit floats ∼ 8 digits
double precision, 64 bit float ∼ 16 digits

Defined by the IEEE 754 standard
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What are floats?

Computers at their current state know finite things.

Real numbers can be irrational

Computers approximate real numbers using floats

Floats are a combination of an exponent and mantissa
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Pi by floats

To illustrate this concept, let’s consider π

π 6= 3.14

π = 3.141593653589 . . .

π = πmach +O(εmach)

εmach is the precision cutoff.
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πmach

Half: π16 = 3.141

Single: π32 = 3.14159265

Double: π64 = 3.141592653589793
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Exonent and Mantissa

Formally, the computer stores floating point numbers as a mantissa
and exponent, in binary. We’ll use base ten:

3.141 = 3141︸︷︷︸
mantissa

×10

exponent︷︸︸︷
−3

There’s also a bit for sign as well.
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Half Precision Floats

In C++ we can use:
#include <half.cpp>
int main(){

using half_float::half;
half pi(3.141);
std::cout<<"This is 16 bit pi!"<<pi<<std::endl;

}

In CUDA we can also use the cuda fp16.h header. With this we
can use half natively. Note only works with CUDA 7.5 or newer.
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Single and Double Precision

Single and Double precision run natively in CUDA C/C++.

Single precision is most performant on most GPUs

Double precision can run on any GPU, but is only performant
on some.
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Precision by Nvidia Brand

Half Single Double

Tesla Pascal or Higher All 1/2 of Single

Geforce Not Performant All 1/32 of Single

Quadro Not Performant All 1/32 of Single

Titan Volta All Some Architectures
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Matrix Multiplication
Shared Memory MatMul

Matrix Addtion?

Done!

Matrix Transpose?
Homework!

Matrix Multiplication?
This chapter!

Steven Reeves GPU 4



Precision Support
Matrix Operations

Stencil

Matrix Multiplication
Shared Memory MatMul

Matrix Addtion?
Done!

Matrix Transpose?

Homework!

Matrix Multiplication?
This chapter!

Steven Reeves GPU 4



Precision Support
Matrix Operations

Stencil

Matrix Multiplication
Shared Memory MatMul

Matrix Addtion?
Done!

Matrix Transpose?
Homework!

Matrix Multiplication?

This chapter!

Steven Reeves GPU 4



Precision Support
Matrix Operations

Stencil

Matrix Multiplication
Shared Memory MatMul

Matrix Addtion?
Done!

Matrix Transpose?
Homework!

Matrix Multiplication?
This chapter!

Steven Reeves GPU 4



Precision Support
Matrix Operations

Stencil

Matrix Multiplication
Shared Memory MatMul

Matrix Multiplication

Given two matrices A,B
A ∈ RN×M

B ∈ RM×L then
C = AB

and C ∈ RN×L.
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Sequential Matrix Multiply

Algorithm 1: A sequential Matrix multiply

Data: A,B
Result: C

1 for i = 0→ N − 1 do
2 for j = 0→ L− 1 do
3 cij = 0;
4 for k = 0→ M − 1 do
5 cij+ = aikbkj ;
6 end

7 end

8 end
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Matrix Multiplication
Shared Memory MatMul

Naive Kernel

Code Kernel

This implementation draws
from global memory
significantly

Sub-optimal on GPUs
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Matrix Multiplication
Shared Memory MatMul

Psycho Kernel

Use Shared Memory

More matrix class functions

Tiling
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Matrix Multiplication
Shared Memory MatMul

Shared Memory Matrix Multiplication

specialized device functions

Shared Memory Kernel
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Matrix Multiplication
Shared Memory MatMul

Worth it?

Serial OpenMP Naive CUDA Shared Mem CUDA
N = 32 1.72× 10−4 2.102× 10−3 2.2× 10−5 1.1× 10−5

N = 64 6.15× 10−4 2.19× 10−3 2.6× 10−5 1.4× 10−5

N = 128 6.39× 10−3 3.19× 10−3 3.9× 10−5 1.6× 10−5

N = 256 5.51× 10−2 1.96× 10−2 1.43× 10−4 7.4× 10−5

N = 512 5.35× 10−1 1.58× 10−1 7.35× 10−4 2.24× 10−4

N = 1024 3.60713 1.52667 5.794× 10−3 1.545× 10−3

N = 2048 111.053 38.3684 4.6233× 10−2 1.2963× 10−2

N = 4096 — — 3.45668× 10−1 7.2939× 10−2

N = 8192 — — 4.16188 5.92996× 10−1
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Stencil

Class of algorithms built
upon gather and map.

Data is updated using a
fixed set of input points,
stencil

Generally the stencil is much
smaller than the over
arching data set.

Close to embarassingly
parallel. Figure: 7 point Von-Neumann

Stencil
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Applications of Stencil

Numerical Partial Differential Equations

Convolutions (Convolutional Neural Networks)

Image Filters - ”Gaussian Blur”

Many more!
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Numerical Integration

Some PDEs are difficult to solve analytically

Numerical Integration Schemes were developed to tackle this
problem

Often these schemes follow the Stencil primitive.
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1D Heat Equation

To illustrate the use of stencil we will solve the 1D Heat Equation

∂f

∂t
− κ∂

2f

∂x2
= 0

Models the heat distribution in a uniform rod

Requires Initial Condition

Requires Boundary Conditions
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Finite Difference Schemes

∂f

∂t
= lim

δt→0

f (t + δt)− f (t)

δt
≈ f (t + δt)− f (t)

δt

∂2f

∂x2
= lim

δx→0

f (x + δx)− 2f (x) + f (x − δx)

δx2

≈ f (x + δx)− 2f (x) + f (x − δx)

δx2
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Forward Time Central Space

∂f

∂t
− κ∂

2f

∂x2
= 0

=⇒
f n+1
i − f ni

δt
− κ

f ni+1 − 2f ni + f ni−1
δx2

= 0

=⇒

f n+1
i = f ni +

κδt

δx2
(
f ni+1 − 2f ni + f ni−1

)
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FTCS Stencil

f ni

f ni+1

f ni−1

f n+1
i1− 2κδt

δx2

κδt
δx2

κδt
δx2
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Boundary Conditions

Suppose that we’re modeling a uniform rod of length L. Further
we suppose that the ends are perflectly insolated. In this case:

The Heat Flux through the ends of the rod is 0

∂f

∂x

∣∣∣∣
x=−L/2,L/2

= 0

f n0 = f n1
f nM−1 = f nM−2
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Numerical Stability

There is a condition on δx and δt in order for the FTCS algorithm
to remain bounded.

κδt

δx2
≤ 1

2
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Example

Let L = 2

Using M = 128 data points over x ∈ [−1, 1]

And a Guassian Heat profile

f (0, x) =
1

2
exp

(
−1

2
x2
)
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