AM 148 Lecture 4

Steven Reeves

University of California, Santa Cruz

sireeves@ucsc.edu

April 16, 2020

2 Matrix Operations

- Matrix Multiplication
- Shared Memory MatMul

3 Stencil

• Numerical Integration

Floats and Precision

• Floating point numbers are a representation of real numbers using rational numbers.

Floats and Precision

- Floating point numbers are a representation of real numbers using rational numbers.
- Floats have a precision type

Floats and Precision

- Floating point numbers are a representation of real numbers using rational numbers.
- Floats have a precision type
 - half precision, 16 bit floats \sim 4 digits
 - single precision, 32 bit floats \sim 8 digits
 - $\bullet\,$ double precision, 64 bit float $\sim\,16$ digits
- Defined by the IEEE 754 standard

What are floats?

Computers at their current state know finite things.

• Real numbers can be irrational

э

What are floats?

Computers at their current state know finite things.

- Real numbers can be irrational
- Computers approximate real numbers using floats

What are floats?

Computers at their current state know finite things.

- Real numbers can be irrational
- Computers approximate real numbers using floats
- Floats are a combination of an exponent and mantissa

To illustrate this concept, let's consider $\boldsymbol{\pi}$

• $\pi \neq 3.14$

문어 문

Pi by floats

To illustrate this concept, let's consider $\boldsymbol{\pi}$

- $\pi \neq 3.14$
- $\pi = 3.141593653589...$

$$\pi = \pi_{mach} + \mathcal{O}(\epsilon_{mach})$$

문▶ 문

Pi by floats

To illustrate this concept, let's consider $\boldsymbol{\pi}$

- $\pi \neq 3.14$
- $\pi = 3.141593653589...$

$$\pi = \pi_{mach} + \mathcal{O}(\epsilon_{mach})$$

• ϵ_{mach} is the precision cutoff.

• Half: $\pi_{16} = 3.141$

Steven Reeves GPU 4

イロト イヨト イヨト イヨト

æ

- Half: $\pi_{16} = 3.141$
- Single: $\pi_{32} = 3.14159265$

æ

イロト イヨト イヨト イヨト

- Half: $\pi_{16} = 3.141$
- Single: $\pi_{32} = 3.14159265$
- Double: $\pi_{64} = 3.141592653589793$

《曰》《聞》《臣》《臣》。

æ

Exonent and Mantissa

Formally, the computer stores floating point numbers as a mantissa and exponent, in binary. We'll use base ten:

$$3.141 = \underbrace{3141}_{\text{mantissa}} \times 10^{\underbrace{\text{exponent}}_{-3}}$$

Exonent and Mantissa

Formally, the computer stores floating point numbers as a mantissa and exponent, in binary. We'll use base ten:

$$3.141 = \underbrace{3141}_{\text{mantissa}} \times 10^{\underbrace{\text{exponent}}_{-3}}$$

There's also a bit for sign as well.

Half Precision Floats

In C++ we can use:

#include <half.cpp>

int main(){

using half_float::half;

half pi(3.141); std::cout<<"This is 16 bit pi!"<<pi<<std::endl;

æ

イロト イヨト イヨト イヨト

Half Precision Floats

In $C++$ we can use:
<pre>#include <half.cpp></half.cpp></pre>
<pre>int main(){ using half_float::half;</pre>
half pi(3.141); std::cout<<"This is 16 bit pi!"< <pi<<std::endl;< td=""></pi<<std::endl;<>

In CUDA we can also use the cuda_fp16.h header. With this we can use half natively. Note only works with CUDA 7.5 or newer.

Single and Double Precision

• Single and Double precision run natively in CUDA C/C++.

Single and Double Precision

- Single and Double precision run natively in CUDA C/C++.
- Single precision is most performant on most GPUs

Single and Double Precision

- Single and Double precision run natively in CUDA C/C++.
- Single precision is most performant on most GPUs
- Double precision can run on any GPU, but is only performant on some.

Precision by Nvidia Brand

	Half	Single	Double
Tesla	Pascal or Higher	All	1/2 of Single
Geforce	Not Performant	All	1/32 of Single
Quadro	Not Performant	All	1/32 of Single
Titan	Volta	All	Some Architectures

æ

(*) * 문 * * 문 *

Matrix Multiplication Shared Memory MatMu

・ロト ・四ト ・ヨト ・ヨト

æ

• Matrix Addtion?

Precision Support Matrix Operations Stencil Matrix Multip

- Matrix Addtion? Done!
- Matrix Transpose?

æ

Matrix Multiplication Shared Memory MatMul

æ

イロト イ団ト イヨト イヨト

- Matrix Addtion? Done!
- Matrix Transpose? Homework!
- Matrix Multiplication?

Matrix Multiplication Shared Memory MatMul

æ

イロト イ団ト イヨト イヨト

- Matrix Addtion? Done!
- Matrix Transpose? Homework!
- Matrix Multiplication? This chapter!

Matrix Multiplication Shared Memory MatMul

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

э

Matrix Multiplication

Given two matrices A, B $\mathbf{A} \in \mathbb{R}^{N \times M}$ $\mathbf{B} \in \mathbb{R}^{M \times L}$ then

and $\mathbf{C} \in \mathbb{R}^{N \times L}$.

C = AB

Matrix Multiplication Shared Memory MatMul

< □ > <

∃ ► < ∃ ►</p>

Sequential Matrix Multiply

Algorithm 1: A sequential Matrix multiply

Data: A.B. Result: C 1 for $i = 0 \rightarrow N - 1$ do for $i = 0 \rightarrow L - 1$ do 2 3 $c_{ii} = 0;$ for $k = 0 \rightarrow M - 1$ do 4 $c_{ii} + = a_{ik} b_{ki};$ 5 end 6 7 end end 8

Matrix Multiplication Shared Memory MatMul

Naive Kernel

Code Kernel

< □ > < 同

æ

æ

Matrix Multiplication Shared Memory MatMul

Naive Kernel

- Code Kernel
- This implementation draws from global memory significantly

Matrix Multiplication Shared Memory MatMul

Naive Kernel

- Code Kernel
- This implementation draws from global memory significantly
- Sub-optimal on GPUs

Shared Memory MatMul

Psycho Kernel

- Use Shared Memory
- More matrix class functions
- Tiling

æ

3

Matrix Multiplication Shared Memory MatMul

Shared Memory Matrix Multiplication

- specialized __device__ functions
- Shared Memory Kernel

Matrix Multiplication Shared Memory MatMul

æ

Worth it?

	Serial	OpenMP	Naive CUDA	Shared Mem CUDA
N = 32	$1.72 imes 10^{-4}$	$2.102 imes 10^{-3}$	$2.2 imes10^{-5}$	$1.1 imes10^{-5}$
N = 64	$6.15 imes10^{-4}$	$2.19 imes10^{-3}$	$2.6 imes10^{-5}$	$1.4 imes10^{-5}$
N = 128	$6.39 imes 10^{-3}$	$3.19 imes10^{-3}$	$3.9 imes10^{-5}$	$1.6 imes10^{-5}$
N = 256	$5.51 imes 10^{-2}$	$1.96 imes10^{-2}$	$1.43 imes10^{-4}$	$7.4 imes10^{-5}$
N = 512	$5.35 imes10^{-1}$	$1.58 imes10^{-1}$	$7.35 imes10^{-4}$	$2.24 imes10^{-4}$
N = 1024	3.60713	1.52667	$5.794 imes10^{-3}$	$1.545 imes10^{-3}$
<i>N</i> = 2048	111.053	38.3684	$4.6233 imes 10^{-2}$	$1.2963 imes 10^{-2}$
N = 4096	_	—	$3.45668 imes 10^{-1}$	$7.2939 imes 10^{-2}$
N = 8192	_	_	4.16188	$5.92996 imes10^{-1}$

Numerical Integration

Stencil

• Class of algorithms built upon gather and map.

æ

æ

Numerical Integration

Stencil

- Class of algorithms built upon gather and map.
- Data is updated using a fixed set of input points, stencil

э

Numerical Integration

Stencil

- Class of algorithms built upon gather and map.
- Data is updated using a fixed set of input points, stencil
- Generally the stencil is much smaller than the over arching data set.

Numerical Integration

Stencil

- Class of algorithms built upon gather and map.
- Data is updated using a fixed set of input points, stencil
- Generally the stencil is much smaller than the over arching data set.
- Close to embarassingly parallel.

Figure: 7 point Von-Neumann Stencil

Numerical Integration

Applications of Stencil

• Numerical Partial Differential Equations

æ

'문▶' ★ 문≯

Numerical Integration

Applications of Stencil

- Numerical Partial Differential Equations
- Convolutions (Convolutional Neural Networks)

э

Numerical Integration

Applications of Stencil

- Numerical Partial Differential Equations
- Convolutions (Convolutional Neural Networks)
- Image Filters "Gaussian Blur"

Numerical Integration

Applications of Stencil

- Numerical Partial Differential Equations
- Convolutions (Convolutional Neural Networks)
- Image Filters "Gaussian Blur"
- Many more!

Numerical Integration

Numerical Integration

• Some PDEs are difficult to solve analytically

문▶ 문

Numerical Integration

Numerical Integration

- Some PDEs are difficult to solve analytically
- Numerical Integration Schemes were developed to tackle this problem

Numerical Integration

Numerical Integration

- Some PDEs are difficult to solve analytically
- Numerical Integration Schemes were developed to tackle this problem
- Often these schemes follow the Stencil primitive.

Numerical Integration

1D Heat Equation

To illustrate the use of stencil we will solve the 1D Heat Equation

$$\frac{\partial f}{\partial t} - \kappa \frac{\partial^2 f}{\partial x^2} = 0$$

æ

Numerical Integration

1D Heat Equation

To illustrate the use of stencil we will solve the 1D Heat Equation

$$\frac{\partial f}{\partial t} - \kappa \frac{\partial^2 f}{\partial x^2} = 0$$

- Models the heat distribution in a uniform rod
- Requires Initial Condition
- Requires Boundary Conditions

Numerical Integration

æ

イロト イ団ト イヨト イヨト

Finite Difference Schemes

$$\frac{\partial f}{\partial t} = \lim_{\delta t \to 0} \frac{f(t + \delta t) - f(t)}{\delta t} \approx \frac{f(t + \delta t) - f(t)}{\delta t}$$

Numerical Integration

æ

Image: A mathematical states and a mathem

'문▶' ★ 문≯

Finite Difference Schemes

$$\frac{\partial f}{\partial t} = \lim_{\delta t \to 0} \frac{f(t + \delta t) - f(t)}{\delta t} \approx \frac{f(t + \delta t) - f(t)}{\delta t}$$
$$\frac{\partial^2 f}{\partial x^2} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - 2f(x) + f(x - \delta x)}{\delta x^2}$$
$$\approx \frac{f(x + \delta x) - 2f(x) + f(x - \delta x)}{\delta x^2}$$

Numerical Integration

Forward Time Central Space

$$\frac{\partial f}{\partial t} - \kappa \frac{\partial^2 f}{\partial x^2} = 0$$

포 🛌 포

Numerical Integration

æ

イロト イ団ト イヨト イヨト

Forward Time Central Space

$$\frac{\partial f}{\partial t} - \kappa \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{f_i^{n+1} - f_i^n}{\delta t} - \kappa \frac{f_{i+1}^n - 2f_i^n + f_{i-1}^n}{\delta x^2} = 0$$

Steven Reeves GPU 4

Numerical Integration

Forward Time Central Space

$$\frac{\partial f}{\partial t} - \kappa \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{f_i^{n+1} - f_i^n}{\delta t} - \kappa \frac{f_{i+1}^n - 2f_i^n + f_{i-1}^n}{\delta x^2} = 0$$

$$\Longrightarrow$$
$$f_i^{n+1} = f_i^n + \frac{\kappa \delta t}{\delta x^2} \left(f_{i+1}^n - 2f_i^n + f_{i-1}^n \right)$$

æ

イロト イ団ト イヨト イヨト

Numerical Integration

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

FTCS Stencil

Numerical Integration

Boundary Conditions

Suppose that we're modeling a uniform rod of length L. Further we suppose that the ends are perflectly insolated. In this case:

• The Heat Flux through the ends of the rod is 0

$$\left. \frac{\partial f}{\partial x} \right|_{x = -L/2, L/2} = 0$$

Numerical Integration

Boundary Conditions

Suppose that we're modeling a uniform rod of length L. Further we suppose that the ends are perflectly insolated. In this case:

• The Heat Flux through the ends of the rod is 0

$$\left. \frac{\partial f}{\partial x} \right|_{x = -L/2, L/2} = 0$$

•
$$f_0^n = f_1^n$$

• $f_{M-1}^n = f_{M-2}^n$

Numerical Integration

Numerical Stability

There is a condition on δx and δt in order for the FTCS algorithm to remain bounded.

$$\frac{\kappa\delta t}{\delta x^2} \le \frac{1}{2}$$

B> B

Numerical Integration

Example

- Let *L* = 2
- Using M = 128 data points over $x \in [-1, 1]$
- And a Guassian Heat profile

$$f(0,x) = \frac{1}{2} \exp\left(-\frac{1}{2}x^2\right)$$

문어 문

Numerical Integration

æ

Example Code

Steven Reeves GPU 4