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How do we add one billion floats ∈ [1, 2)

summ = 0.0f;

for(int i = 0; i < n; i++)

summ += array[i];
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Problems with this implementation

Slow

Precision issues

10, 000, 000 + 1.234789 = 10, 000, 001.0

How can we solve these issues?
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Reduce

Let’s first consider the underlying operation:

Reduce

Reduces an array to one data point
Requires a binary associative operator.

Steven Reeves GPU 5



Reduce
Scan

Parallel Add Reduce
Brent’s Theorem
CUDA Reduce
Finite Integrals using Reduce

Reduce

Let’s first consider the underlying operation:

Reduce

Reduces an array to one data point

Requires a binary associative operator.

Steven Reeves GPU 5



Reduce
Scan

Parallel Add Reduce
Brent’s Theorem
CUDA Reduce
Finite Integrals using Reduce

Reduce

Let’s first consider the underlying operation:

Reduce

Reduces an array to one data point
Requires a binary associative operator.

Steven Reeves GPU 5



Reduce
Scan

Parallel Add Reduce
Brent’s Theorem
CUDA Reduce
Finite Integrals using Reduce

Reduce as a mathematical function

Let x be an array containing some data type, and let ⊕ be a binary
associative operator.

Binary: If a, b are of the same type then a⊕ b is of that type.

Associative: Let a, b, c be the same type, then

(a⊕ b)⊕ c = a⊕ (b ⊕ c)

The reduce is cast as

R(x,⊕) = x0 ⊕ x1 ⊕ · · · ⊕ xn−1
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Reduction Example

Suppose we want to add 8 floats.

Float is data type

Binary operator is addition

We know addition is associative

The result is a summation.

for(int i = 0; i < 8; i++)

summ += array[i];

How can we use the above assumptions to make this summation
parallel?
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Computational Tree

1 2

+ 3

+ 4

+ 5

· · ·
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Parallel Sum Computational Tree

On the Board
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Complexity of Parallel Reduce

N Steps

2 1
4 2
8 3

Table: Step complexity for parallel reduce

What type of pattern do we see?

Steps = O(log2(N))

Steven Reeves GPU 5



Reduce
Scan

Parallel Add Reduce
Brent’s Theorem
CUDA Reduce
Finite Integrals using Reduce

Complexity of Parallel Reduce

N Steps

2 1
4 2
8 3

Table: Step complexity for parallel reduce

What type of pattern do we see?

Steps = O(log2(N))

Steven Reeves GPU 5



Reduce
Scan

Parallel Add Reduce
Brent’s Theorem
CUDA Reduce
Finite Integrals using Reduce

Complexity of Parallel Reduce

N Steps

2 1
4 2
8 3

Table: Step complexity for parallel reduce

What type of pattern do we see?

Steps = O(log2(N))

Steven Reeves GPU 5



Reduce
Scan

Parallel Add Reduce
Brent’s Theorem
CUDA Reduce
Finite Integrals using Reduce

True Scaling?

Note it only scales like log2(N) if we have N processors. Suppose
we have only p < N processors?

Then we use Brent’s Theorem, to
find the true scaling.
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Representing Algorithms as Graphs

We can represent algorithms
as computational trees

These trees are often
directed acyclic
graphs(DAGs)

DAGs are useful to illustrate
an algorithms flow and
dependencies
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Example DAGs

11

5

2

7

10

9 3

8

Figure: Example directed acyclic graph
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Brent’s Theorem

T1 = serial execution time (number of nodes at row 1 in this
case)

T∞ = depth of the DAG

Tp = steps an algorithm takes with p threads

Then Brent’s Theorem states:

T1

p
≤ TP ≤

T1

p
+ T∞

So for a reduce algorithm

Tp ≤
T1

p
+ T∞ =

N

p
+ log2(N)
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Parallel Summation

Lets sum a million points (acutally 220).

float Bad_serial_reduce(const float *data , int N)

{

float summ =0.0f;

for(int i = 0; i < N; i++)

summ+= data[i];

return summ;

}

this is bad

we’ll do two different ways in CUDA
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Application Of Reduce

It is known that ∫ 1

−1

√
1− x2dx =

π

2

We can calculate more digits of pi this way

We can test our reduction algorithm with this

How do we go from an integral to a sum?
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Numerical Integration

Composite Trapezoidal Rule:∫ b

a
f (x)dx ≈

N∑
1

(f (xj−1) + f (xj))
δx

2

where

[a, b] =
N⋃
i=1

[xi−1, xi ]

and a = x0, and b = xN .
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Kernels

In our application we will set N = 220.

This application is a map-reduce algorithm

We must Map onto f (x) =
√

1− x2

Then we have two stages of reduce.

Lastly we will multiply the result by 2.
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Scan

Scan is a generalization of reduce to yield an array

Any binary operation can be used in a scan algorithm

Notable applications: CDF calculation, sorting algorithms
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A Short Example

Input: {1, 2, 3, 4}

Operation: +

Output: {1, 3, 6, 10}
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Mathematical Representation of Scan

S(x,⊕) = y

The operator ⊕ forms a group over the set of elements in x

⊕ is associative

⊕ is closed, i.e. x ⊕ y = z where x , y , z are of the same type

There exists an identity element e, that is e ⊕ x = x for every
element of type x
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What does scan do?

Let S be the scan primitive, and ⊕ be a binary operator for the
data type, then for an inclusive scan[

a0, a1, a2, · · · , an−1
]
:inputa0, a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, · · · ,
n−1⊕
j=0

aj

 :output

and for an exclusive scan[
a0, a1, a2, · · · , an−1

]
:inpute, a0, a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, · · · ,
n−2⊕
j=0

aj

 :output
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Implementation of scan

int acc = identity; //for op + identity = 0.0;

for (int = 0; i < elements.length (); i++)

{

acc = acc op element[i] // acc + element[i]

or max(acc , element);

out[i] = acc;

}
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Hillis and Steele

Danny Hillis And Guy Steele 1986

Thinking Machines

It’s best to observe the graph of this algorithm
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Hillis And Steele Scan

54321 6 7 8

1 3 5 7 9 11 13 15

1 3 6 10 14 18 22 26

1 3 6 10 15 21 28 36
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Properties of the Hillis and Steele Algorithm

Has Step complexity O(log(n))

However has O(n log(n)) work complexity

Essentially doing n reductions

Is an inclusive scan

Best for small arrays where the number of processors is equal
to or greater than the number of array elements.
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A more work efficient scan?

Serial scan has a work complexity of n

The Hillis and Steele algorithm is more work complex than
serial

If the number of size of the data array is larger than the
number of threads, we seek a more work efficient algorithm
than H&S

To this effect we look to the Blelloch Scan
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Blelloch

Formulated by Guy Blelloch in 1990

Has two stages

Reduce
Downsweep

Requires the downseep ”operator”

L R

R L + R
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Reduce Phase

54321 6 7 8

3 7 11 15

10 26

36
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Downseep Phase

010

101103

2171053301

282115106310
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Properties of the Blelloch Scan

The Step complexity of the reduce phase is O(log(n))

The Work complexity is of O(n).

The communication pattern of the downsweep mirrors reduce

Thus the step and work complexity are the same

So the Blelloch scan has 2 log(n) steps, but O(n) work

Note that the Blelloch Scan is exclusive
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Mix and match

What if we want a work efficient inclusive scan?

Or a step efficient exclusive scan?

For inclusive to exclusive:

Shift all elements to the right, drop last element
Store the identity in the first entry

Exclusive to Inclusive:

Shift all elements to the left, drop first element
Perform operation on last element of scan and last of original
array
Or – store the reduced element in a temporary variable at the
end of the ruduce phase
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CDF

To illustrate the use of scan we will compute a Cummulative
Distribution Function

Our underlying Probability Density Function will be the
normal distribution.

f (x |µ, σ2) =
1√

2πσ2
exp

[
−(x − µ)2

2σ2

]
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The CDF for the Normal distribution is

Φ(x |µ, σ2) =
1

2

[
1 + erf

(
x − µ√

2σ

)]

Cannot describe the error function as a combination of
elementary functions

Must find it numerically.
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Definition of CDF

Note that

Φ(x |µ, σ2) =

∫ x

−∞
f (x ′|µ, σ2)dx ′

Computers can’t do infinity

However, f is rapidly descreasing

That is, f → 0 as |x | → ∞ ”faster” than any polynomial

And by the empirical rule, 99.7% of the probability is
contained within 3 standard deviations from the mean

Φ(x |µ, σ2) ≈
∫ x

x−5µ
f (x ′|µ, σ2)dx ′
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Numerical Plan

1 Use Trapezoidal Rule to discretize the integral

2 Use a Stencil + Map to generate array to be scanned

3 Use device function to apply normal distribution to x

4 Use work efficient Blelloch Scan to perform the numerical
integration

5 Perform the shift to turn exclusive scan to inclusive
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Stencil + Map Kernel
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Blelloch Scan Kernel

Steven Reeves GPU 5



Reduce
Scan

Inclusive Scan
Exclusive Scan
Application to CDF calculation

Shift Kernel
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Generalizing Scan to Larger Arrays

1 Perform scan on all m thread blocks

2 Create a second array to contain the last element from each
scan

3 Scan this array

4 Use newly updated second array to correct original scan by
thread block
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