AMS 148 Lecture 5

Steven Reeves
University of California, Santa Cruz
sireeves@ucsc.edu

April 23, 2020

Baskin
Engineering
USANTHAGRUL

Overview

(1) Reduce

- Parallel Add Reduce
- Brent's Theorem
- CUDA Reduce
- Finite Integrals using Reduce
(2) Scan
- Inclusive Scan
- Exclusive Scan
- Application to CDF calculation

How do we add one billion floats $\in[1,2)$

How do we add one billion floats $\in[1,2)$

```
summ = 0.0f;
for(int i = 0; i < n; i++)
    summ += array[i];
```


Problems with this implementation

- Slow

Problems with this implementation

- Slow
- Precision issues

$$
10,000,000+1.234789=10,000,001.0
$$

Problems with this implementation

- Slow
- Precision issues

$$
10,000,000+1.234789=10,000,001.0
$$

- How can we solve these issues?

Reduce

Let's first consider the underlying operation:

- Reduce

Reduce

Let's first consider the underlying operation:

- Reduce
- Reduces an array to one data point

Reduce

Let's first consider the underlying operation:

- Reduce
- Reduces an array to one data point
- Requires a binary associative operator.

Reduce as a mathematical function

Let \mathbf{x} be an array containing some data type, and let \oplus be a binary associative operator.

Reduce as a mathematical function

Let \mathbf{x} be an array containing some data type, and let \oplus be a binary associative operator.

- Binary: If a, b are of the same type then $a \oplus b$ is of that type.

Reduce as a mathematical function

Let \mathbf{x} be an array containing some data type, and let \oplus be a binary associative operator.

- Binary: If a, b are of the same type then $a \oplus b$ is of that type.
- Associative: Let a, b, c be the same type, then

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

Reduce as a mathematical function

Let \mathbf{x} be an array containing some data type, and let \oplus be a binary associative operator.

- Binary: If a, b are of the same type then $a \oplus b$ is of that type.
- Associative: Let a, b, c be the same type, then

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

- The reduce is cast as

$$
\mathcal{R}(\mathbf{x}, \oplus)=x_{0} \oplus x_{1} \oplus \cdots \oplus x_{n-1}
$$

Reduction Example

Suppose we want to add 8 floats.

- Float is data type

Reduction Example

Suppose we want to add 8 floats.

- Float is data type
- Binary operator is addition
- We know addition is associative

Reduction Example

Suppose we want to add 8 floats.

- Float is data type
- Binary operator is addition
- We know addition is associative
- The result is a summation.

```
for(int i = 0; i < 8; i++)
    summ += array[i];
```


Reduction Example

Suppose we want to add 8 floats.

- Float is data type
- Binary operator is addition
- We know addition is associative
- The result is a summation.

```
for(int i = 0; i < 8; i++)
    summ += array[i];
```

How can we use the above assumptions to make this summation parallel?

Computational Tree

Parallel Sum Computational Tree

On the Board

Complexity of Parallel Reduce

N	Steps
2	1
4	2
8	3

Table: Step complexity for parallel reduce

Complexity of Parallel Reduce

N	Steps
2	1
4	2
8	3

Table: Step complexity for parallel reduce

What type of pattern do we see?

Complexity of Parallel Reduce

N	Steps
2	1
4	2
8	3

Table: Step complexity for parallel reduce

What type of pattern do we see?

$$
\text { Steps }=\mathcal{O}\left(\log _{2}(N)\right)
$$

True Scaling?

Note it only scales like $\log _{2}(N)$ if we have N processors. Suppose we have only $p<N$ processors?

True Scaling?

Note it only scales like $\log _{2}(N)$ if we have N processors. Suppose we have only $p<N$ processors? Then we use Brent's Theorem, to find the true scaling.

Representing Algorithms as Graphs

- We can represent algorithms as computational trees

Representing Algorithms as Graphs

- We can represent algorithms as computational trees
- These trees are often directed acyclic graphs(DAGs)

Representing Algorithms as Graphs

- We can represent algorithms as computational trees
- These trees are often directed acyclic graphs(DAGs)
- DAGs are useful to illustrate an algorithms flow and dependencies

Example DAGs

Figure: Example directed acyclic graph

Brent's Theorem

- $T_{1}=$ serial execution time (number of nodes at row 1 in this case)

Brent's Theorem

- $T_{1}=$ serial execution time (number of nodes at row 1 in this case)
- $T_{\infty}=$ depth of the DAG

Brent's Theorem

- $T_{1}=$ serial execution time (number of nodes at row 1 in this case)
- $T_{\infty}=$ depth of the DAG
- $T_{p}=$ steps an algorithm takes with p threads

Brent's Theorem

- $T_{1}=$ serial execution time (number of nodes at row 1 in this case)
- $T_{\infty}=$ depth of the DAG
- $T_{p}=$ steps an algorithm takes with p threads

Then Brent's Theorem states:

$$
\frac{T_{1}}{p} \leq T_{P} \leq \frac{T_{1}}{p}+T_{\infty}
$$

So for a reduce algorithm

$$
T_{p} \leq \frac{T_{1}}{p}+T_{\infty}=\frac{N}{p}+\log _{2}(N)
$$

Parallel Summation

Lets sum a million points (acutally 2^{20}).

Parallel Summation

Lets sum a million points (acutally 2^{20}).

```
float Bad_serial_reduce(const float *data, int N)
{
```

```
float summ =0.0f;
```

float summ =0.0f;
for(int i = 0; i < N; i++)
for(int i = 0; i < N; i++)
summ+= data[i];
summ+= data[i];
return summ;

```
return summ;
```

- this is bad
- we'll do two different ways in CUDA

Application Of Reduce

It is known that

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{2}
$$

Application Of Reduce

It is known that

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{2}
$$

- We can calculate more digits of pi this way

Application Of Reduce

It is known that

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{2}
$$

- We can calculate more digits of pi this way
- We can test our reduction algorithm with this

Application Of Reduce

It is known that

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{2}
$$

- We can calculate more digits of pi this way
- We can test our reduction algorithm with this
- How do we go from an integral to a sum?

Numerical Integration

Composite Trapezoidal Rule:

$$
\int_{a}^{b} f(x) d x \approx \sum_{1}^{N}\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right) \frac{\delta x}{2}
$$

Numerical Integration

Composite Trapezoidal Rule:

$$
\int_{a}^{b} f(x) d x \approx \sum_{1}^{N}\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right) \frac{\delta x}{2}
$$

where

$$
[a, b]=\bigcup_{i=1}^{N}\left[x_{i-1}, x_{i}\right]
$$

and $a=x_{0}$, and $b=x_{N}$.

Kernels

In our application we will set $N=2^{20}$.

- This application is a map-reduce algorithm

Kernels

In our application we will set $N=2^{20}$.

- This application is a map-reduce algorithm
- We must Map onto $f(x)=\sqrt{1-x^{2}}$

Kernels

In our application we will set $N=2^{20}$.

- This application is a map-reduce algorithm
- We must Map onto $f(x)=\sqrt{1-x^{2}}$
- Then we have two stages of reduce.
- Lastly we will multiply the result by 2 .

Scan

- Scan is a generalization of reduce to yield an array

Scan

- Scan is a generalization of reduce to yield an array
- Any binary operation can be used in a scan algorithm

Scan

- Scan is a generalization of reduce to yield an array
- Any binary operation can be used in a scan algorithm
- Notable applications: CDF calculation, sorting algorithms

A Short Example

> Input: $\{1,2,3,4\}$
> Operation: +
> Output: $\{1,3,6,10\}$

Mathematical Representation of Scan

$$
\mathcal{S}(\mathbf{x}, \oplus)=\mathbf{y}
$$

Mathematical Representation of Scan

$$
\mathcal{S}(\mathbf{x}, \oplus)=\mathbf{y}
$$

- The operator \oplus forms a group over the set of elements in \mathbf{x}

Mathematical Representation of Scan

$$
\mathcal{S}(\mathbf{x}, \oplus)=\mathbf{y}
$$

- The operator \oplus forms a group over the set of elements in \mathbf{x}
- \oplus is associative
- \oplus is closed, i.e. $x \oplus y=z$ where x, y, z are of the same type
- There exists an identity element e, that is $e \oplus x=x$ for every element of type x

What does scan do?

Let \mathcal{S} be the scan primitive, and \oplus be a binary operator for the data type, then for an inclusive scan

$$
\begin{gathered}
{\left[a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right]: \text { input }} \\
{\left[a_{0}, a_{0} \oplus a_{1}, a_{0} \oplus a_{1} \oplus a_{2}, \cdots, \bigoplus_{j=0}^{n-1} a_{j}\right]: \text { output }}
\end{gathered}
$$

What does scan do?

Let \mathcal{S} be the scan primitive, and \oplus be a binary operator for the data type, then for an inclusive scan

$$
\left[a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right] \text { :input }
$$

$$
\left[a_{0}, a_{0} \oplus a_{1}, a_{0} \oplus a_{1} \oplus a_{2}, \cdots, \bigoplus_{j=0}^{n-1} a_{j}\right] \text { :output }
$$

and for an exclusive scan

$$
\left[a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right] \text { :input }
$$

$$
\left[e, a_{0}, a_{0} \oplus a_{1}, a_{0} \oplus a_{1} \oplus a_{2}, \cdots, \bigoplus_{j=0}^{n-2} a_{j}\right] \text { :output }
$$

Implementation of scan

```
int acc \(=\) identity; //for op + identity \(=0.0\);
for (int \(=0 ; i<e l e m e n t s . l e n g t h() ; i++\) )
    \{
        acc \(=\) acc op element[i] // acc + element[i]
        or max (acc, element);
    out[i] = acc;
    \}
```


Hillis and Steele

- Danny Hillis And Guy Steele 1986

Hillis and Steele

- Danny Hillis And Guy Steele 1986
- Thinking Machines

Hillis and Steele

- Danny Hillis And Guy Steele 1986
- Thinking Machines
- It's best to observe the graph of this algorithm

Inclusive Scan

Hillis And Steele Scan

Properties of the Hillis and Steele Algorithm

- Has Step complexity $\mathcal{O}(\log (n))$

Properties of the Hillis and Steele Algorithm

- Has Step complexity $\mathcal{O}(\log (n))$
- However has $\mathcal{O}(n \log (n))$ work complexity

Properties of the Hillis and Steele Algorithm

- Has Step complexity $\mathcal{O}(\log (n))$
- However has $\mathcal{O}(n \log (n))$ work complexity
- Essentially doing n reductions

Properties of the Hillis and Steele Algorithm

- Has Step complexity $\mathcal{O}(\log (n))$
- However has $\mathcal{O}(n \log (n))$ work complexity
- Essentially doing n reductions
- Is an inclusive scan

Properties of the Hillis and Steele Algorithm

- Has Step complexity $\mathcal{O}(\log (n))$
- However has $\mathcal{O}(n \log (n))$ work complexity
- Essentially doing n reductions
- Is an inclusive scan
- Best for small arrays where the number of processors is equal to or greater than the number of array elements.

A more work efficient scan?

- Serial scan has a work complexity of n

A more work efficient scan?

- Serial scan has a work complexity of n
- The Hillis and Steele algorithm is more work complex than serial

A more work efficient scan?

- Serial scan has a work complexity of n
- The Hillis and Steele algorithm is more work complex than serial
- If the number of size of the data array is larger than the number of threads, we seek a more work efficient algorithm than H\&S

A more work efficient scan?

- Serial scan has a work complexity of n
- The Hillis and Steele algorithm is more work complex than serial
- If the number of size of the data array is larger than the number of threads, we seek a more work efficient algorithm than H\&S
- To this effect we look to the Blelloch Scan

Blelloch

- Formulated by Guy Blelloch in 1990

Blelloch

- Formulated by Guy Blelloch in 1990
- Has two stages
- Reduce
- Downsweep

Blelloch

- Formulated by Guy Blelloch in 1990
- Has two stages
- Reduce
- Downsweep
- Requires the downseep "operator"

Reduce Phase

Downseep Phase

Properties of the Blelloch Scan

- The Step complexity of the reduce phase is $\mathcal{O}(\log (n))$

Properties of the Blelloch Scan

- The Step complexity of the reduce phase is $\mathcal{O}(\log (n))$
- The Work complexity is of $\mathcal{O}(n)$.

Properties of the Blelloch Scan

- The Step complexity of the reduce phase is $\mathcal{O}(\log (n))$
- The Work complexity is of $\mathcal{O}(n)$.
- The communication pattern of the downsweep mirrors reduce
- Thus the step and work complexity are the same

Properties of the Blelloch Scan

- The Step complexity of the reduce phase is $\mathcal{O}(\log (n))$
- The Work complexity is of $\mathcal{O}(n)$.
- The communication pattern of the downsweep mirrors reduce
- Thus the step and work complexity are the same
- So the Blelloch scan has $2 \log (n)$ steps, but $\mathcal{O}(n)$ work

Properties of the Blelloch Scan

- The Step complexity of the reduce phase is $\mathcal{O}(\log (n))$
- The Work complexity is of $\mathcal{O}(n)$.
- The communication pattern of the downsweep mirrors reduce
- Thus the step and work complexity are the same
- So the Blelloch scan has $2 \log (n)$ steps, but $\mathcal{O}(n)$ work
- Note that the Blelloch Scan is exclusive

Mix and match

- What if we want a work efficient inclusive scan?
- Or a step efficient exclusive scan?

Mix and match

- What if we want a work efficient inclusive scan?
- Or a step efficient exclusive scan?
- For inclusive to exclusive:
- Shift all elements to the right, drop last element
- Store the identity in the first entry

Mix and match

- What if we want a work efficient inclusive scan?
- Or a step efficient exclusive scan?
- For inclusive to exclusive:
- Shift all elements to the right, drop last element
- Store the identity in the first entry
- Exclusive to Inclusive:
- Shift all elements to the left, drop first element
- Perform operation on last element of scan and last of original array
- Or - store the reduced element in a temporary variable at the end of the ruduce phase

CDF

- To illustrate the use of scan we will compute a Cummulative Distribution Function

CDF

- To illustrate the use of scan we will compute a Cummulative Distribution Function
- Our underlying Probability Density Function will be the normal distribution.

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

The CDF for the Normal distribution is

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right)\right]
$$

The CDF for the Normal distribution is

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right)\right]
$$

- Cannot describe the error function as a combination of elementary functions

The CDF for the Normal distribution is

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right)\right]
$$

- Cannot describe the error function as a combination of elementary functions
- Must find it numerically.

Definition of CDF

Note that

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\int_{-\infty}^{x} f\left(x^{\prime} \mid \mu, \sigma^{2}\right) d x^{\prime}
$$

Definition of CDF

Note that

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\int_{-\infty}^{x} f\left(x^{\prime} \mid \mu, \sigma^{2}\right) d x^{\prime}
$$

- Computers can't do infinity

Definition of CDF

Note that

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\int_{-\infty}^{x} f\left(x^{\prime} \mid \mu, \sigma^{2}\right) d x^{\prime}
$$

- Computers can't do infinity
- However, f is rapidly descreasing
- That is, $f \rightarrow 0$ as $|x| \rightarrow \infty$ "faster" than any polynomial

Definition of CDF

Note that

$$
\Phi\left(x \mid \mu, \sigma^{2}\right)=\int_{-\infty}^{x} f\left(x^{\prime} \mid \mu, \sigma^{2}\right) d x^{\prime}
$$

- Computers can't do infinity
- However, f is rapidly descreasing
- That is, $f \rightarrow 0$ as $|x| \rightarrow \infty$ "faster" than any polynomial
- And by the empirical rule, 99.7% of the probability is contained within 3 standard deviations from the mean

$$
\Phi\left(x \mid \mu, \sigma^{2}\right) \approx \int_{x-5 \mu}^{x} f\left(x^{\prime} \mid \mu, \sigma^{2}\right) d x^{\prime}
$$

Numerical Plan

(1) Use Trapezoidal Rule to discretize the integral

Numerical Plan

(1) Use Trapezoidal Rule to discretize the integral
(2) Use a Stencil + Map to generate array to be scanned
(3) Use device function to apply normal distribution to x

Numerical Plan

(1) Use Trapezoidal Rule to discretize the integral
(2) Use a Stencil + Map to generate array to be scanned
(3) Use device function to apply normal distribution to x
(9) Use work efficient Blelloch Scan to perform the numerical integration
(5) Perform the shift to turn exclusive scan to inclusive

Stencil + Map Kernel

Blelloch Scan Kernel

Shift Kernel

Generalizing Scan to Larger Arrays

(1) Perform scan on all m thread blocks

Generalizing Scan to Larger Arrays

(1) Perform scan on all m thread blocks
(2) Create a second array to contain the last element from each scan

Generalizing Scan to Larger Arrays

(1) Perform scan on all m thread blocks
(2) Create a second array to contain the last element from each scan
(3) Scan this array

Generalizing Scan to Larger Arrays

(1) Perform scan on all m thread blocks
(2) Create a second array to contain the last element from each scan
(3) Scan this array
(9) Use newly updated second array to correct original scan by thread block

