
Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

AM 148 Lecture 6

Steven Reeves

University of California, Santa Cruz

sireeves@ucsc.edu

May 3, 2018

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Overview

1 Histogram
Atomics
Generating Color Distributions from an image

2 Segmented Scan

3 Sort

4 Sparse Matrix Vector Product

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

What is a Histogram?

Histogram gives a representation of the distribution of
numerical data

Its an estimate of the true PDF

Based on binning

Algorithm classifies data based on a bin and collects the
binned data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

What is a Histogram?

Histogram gives a representation of the distribution of
numerical data

Its an estimate of the true PDF

Based on binning

Algorithm classifies data based on a bin and collects the
binned data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

What is a Histogram?

Histogram gives a representation of the distribution of
numerical data

Its an estimate of the true PDF

Based on binning

Algorithm classifies data based on a bin and collects the
binned data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

How can we make one?

A serial implementation is straightforward

void histogram(unsigned int *histo , type *measurements , int

bin_count , int array_length)

{

for(int i = 0; i < bin_count; i++)

histo[i] = 0;

for(int i = 0; i <array_length; i++)

histo[computeBin(measurements[i])]++;

}

Here your data could be integers, floats, or strings e.g. ”Green”,
”Blue”, etc

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

First Try Parallel Histogram

__global__ void first_hist(unsigned int *histo , type *data ,

int n)

{

int tid = threadIdx.x + blockDim.x*blockIdx.x;

if(tid > n)

return;

histo[computeBin(data[tid])]++;

//Where computeBin is a __device__ function!

}

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Why didn’t this work?

The source of our issues is with the d bins[myBin]++ line

What is going on with this line?
1 Read bin Value from global memory to a register
2 Increment Bin Value
3 Write Bin Value from register to global memory

Race condition!

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Why didn’t this work?

The source of our issues is with the d bins[myBin]++ line

What is going on with this line?
1 Read bin Value from global memory to a register
2 Increment Bin Value
3 Write Bin Value from register to global memory

Race condition!

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Why didn’t this work?

The source of our issues is with the d bins[myBin]++ line

What is going on with this line?
1 Read bin Value from global memory to a register
2 Increment Bin Value
3 Write Bin Value from register to global memory

Race condition!

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Fixing the issue

Atomics are built in CUDA pragmas that serialize memory
transactions/operations

Locks a locale in memory so that no other thread can
read/write to it until current thread is done

We’ll use atomicAdd

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Issue with Atomics

Serialized access to memory location

Creates a performance bottleneck

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Issue with Atomics

Serialized access to memory location

Creates a performance bottleneck

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Thought experiment

Lets suppose we have 1 million measurements which we wish to
create a histogram for. Using the atomic method which will be
fastest?

1 A histogram with 10 bins

2 A histogram with 100 bins

3 A histogram with 1000 bins

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Thought experiment

Lets suppose we have 1 million measurements which we wish to
create a histogram for. Using the atomic method which will be
fastest?

1 A histogram with 10 bins

2 A histogram with 100 bins

3 A histogram with 1000 bins

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Thought experiment

Lets suppose we have 1 million measurements which we wish to
create a histogram for. Using the atomic method which will be
fastest?

1 A histogram with 10 bins

2 A histogram with 100 bins

3 A histogram with 1000 bins

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Thought experiment

Lets suppose we have 1 million measurements which we wish to
create a histogram for. Using the atomic method which will be
fastest?

1 A histogram with 10 bins

2 A histogram with 100 bins

3 A histogram with 1000 bins

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

A Shared Memory Approach

Create block local histogram

Use atomics

Combines block local histograms into global histogram

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

A Shared Memory Approach

Create block local histogram

Use atomics

Combines block local histograms into global histogram

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Application of Histogram

Generating Color distributions of an image

Generating frequency/probability distributions from raw data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Application of Histogram

Generating Color distributions of an image

Generating frequency/probability distributions from raw data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Atomics
Generating Color Distributions from an image

Code

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Segmented Scan

Sometimes we don’t wish to do a full scan on an array

Launching many separate scans is inefficient

Combine Arrays as segments, use a flagging array to mark
segments.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Segmented Scan

Sometimes we don’t wish to do a full scan on an array

Launching many separate scans is inefficient

Combine Arrays as segments, use a flagging array to mark
segments.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Segmented Scan

Sometimes we don’t wish to do a full scan on an array

Launching many separate scans is inefficient

Combine Arrays as segments, use a flagging array to mark
segments.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Exclusive sum scan:

(1, 2, 3, 4, 5, 6, 7, 8,) =⇒ (0, 1, 3, 6, 10, 15, 21, 28)

(1, 2|3, 4, 5|6, 7, 8) =⇒ (0, 1|0, 3, 7|0, 6, 13)

using
(1, 0, 1, 0, 0, 1, 0, 0)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Exclusive sum scan:

(1, 2, 3, 4, 5, 6, 7, 8,) =⇒ (0, 1, 3, 6, 10, 15, 21, 28)

(1, 2|3, 4, 5|6, 7, 8) =⇒ (0, 1|0, 3, 7|0, 6, 13)

using
(1, 0, 1, 0, 0, 1, 0, 0)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact

Before we begin a sort, let’s talk about an algorithm called
compact

Compact is an algorithm to partition data

Input data → smaller partition of input data

Compacting the larging input set into something smaller

If we only want to do computation on a subset of data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact

Before we begin a sort, let’s talk about an algorithm called
compact

Compact is an algorithm to partition data

Input data → smaller partition of input data

Compacting the larging input set into something smaller

If we only want to do computation on a subset of data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact

Before we begin a sort, let’s talk about an algorithm called
compact

Compact is an algorithm to partition data

Input data → smaller partition of input data

Compacting the larging input set into something smaller

If we only want to do computation on a subset of data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact

Before we begin a sort, let’s talk about an algorithm called
compact

Compact is an algorithm to partition data

Input data → smaller partition of input data

Compacting the larging input set into something smaller

If we only want to do computation on a subset of data

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact Continued

Input
[S0, S1,S2, S3, S4, . . .]

Predicate (is my index even for example)

[T ,F ,T ,F ,T , . . .]

Output
S0,S2,S4, . . .

To generate the output we need to compute the scatter
address of each output element

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact Continued

Input
[S0, S1,S2, S3, S4, . . .]

Predicate (is my index even for example)

[T ,F ,T ,F ,T , . . .]

Output
S0,S2,S4, . . .

To generate the output we need to compute the scatter
address of each output element

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact Continued

Input
[S0, S1,S2, S3, S4, . . .]

Predicate (is my index even for example)

[T ,F ,T ,F ,T , . . .]

Output
S0,S2, S4, . . .

To generate the output we need to compute the scatter
address of each output element

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact Continued

Input
[S0, S1,S2, S3, S4, . . .]

Predicate (is my index even for example)

[T ,F ,T ,F ,T , . . .]

Output
S0,S2, S4, . . .

To generate the output we need to compute the scatter
address of each output element

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact In Parallel

To Compact in parallel we need to compute scatter addresses

Given this set of predicates

[T ,F ,F ,T ,T ,F ,T ,F]

we compute addresses

[0−,−, 1, 2,−, 3,−]

Change predicates

[1, 0, 0, 1, 1, 0, 1, 0]

And generate
[0, 1, 1, 1, 2, 3, 3, 4]

This is a Scan operation!

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact In Parallel

To Compact in parallel we need to compute scatter addresses
Given this set of predicates

[T ,F ,F ,T ,T ,F ,T ,F]

we compute addresses

[0−,−, 1, 2,−, 3,−]

Change predicates

[1, 0, 0, 1, 1, 0, 1, 0]

And generate
[0, 1, 1, 1, 2, 3, 3, 4]

This is a Scan operation!

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact In Parallel

To Compact in parallel we need to compute scatter addresses
Given this set of predicates

[T ,F ,F ,T ,T ,F ,T ,F]

we compute addresses

[0−,−, 1, 2,−, 3,−]

Change predicates

[1, 0, 0, 1, 1, 0, 1, 0]

And generate
[0, 1, 1, 1, 2, 3, 3, 4]

This is a Scan operation!

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Compact In Parallel

To Compact in parallel we need to compute scatter addresses
Given this set of predicates

[T ,F ,F ,T ,T ,F ,T ,F]

we compute addresses

[0−,−, 1, 2,−, 3,−]

Change predicates

[1, 0, 0, 1, 1, 0, 1, 0]

And generate
[0, 1, 1, 1, 2, 3, 3, 4]

This is a Scan operation!
Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sorting an array

Most sorts are serial algorithms!

We need to find efficient Parallel Algoirthms!

Keep Hardware busy (lots of threads)
Limit thread divergence
Prefer Coalesced Memory Access

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sorting an array

Most sorts are serial algorithms!

We need to find efficient Parallel Algoirthms!

Keep Hardware busy (lots of threads)

Limit thread divergence
Prefer Coalesced Memory Access

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sorting an array

Most sorts are serial algorithms!

We need to find efficient Parallel Algoirthms!

Keep Hardware busy (lots of threads)
Limit thread divergence

Prefer Coalesced Memory Access

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sorting an array

Most sorts are serial algorithms!

We need to find efficient Parallel Algoirthms!

Keep Hardware busy (lots of threads)
Limit thread divergence
Prefer Coalesced Memory Access

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort

Radix sort relies on sorting using the binary notation of a number.
Here are a number of steps for a basic Radix sort algorithm:

1 Start with least signicant bit

2 Split Input into 2 sets based on bit, otherwise preserve order

3 Move to next most significant bit, rinse and repeat.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort

Radix sort relies on sorting using the binary notation of a number.
Here are a number of steps for a basic Radix sort algorithm:

1 Start with least signicant bit

2 Split Input into 2 sets based on bit, otherwise preserve order

3 Move to next most significant bit, rinse and repeat.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort

Radix sort relies on sorting using the binary notation of a number.
Here are a number of steps for a basic Radix sort algorithm:

1 Start with least signicant bit

2 Split Input into 2 sets based on bit, otherwise preserve order

3 Move to next most significant bit, rinse and repeat.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

[0, 5, 2, 7, 1, 3, 6, 4] =⇒ [000, 101, 010, 111, 001, 011, 110, 100]

group least significant bit

[000, 010, 110, 100, 101, 111, 001, 011]

move to next bit

[000, 100, 101, 001, 010, 110, 111, 011]

finally

[000, 001, 010, 011, 100, 101, 110, 111] =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

[0, 5, 2, 7, 1, 3, 6, 4] =⇒ [000, 101, 010, 111, 001, 011, 110, 100]

group least significant bit

[000, 010, 110, 100, 101, 111, 001, 011]

move to next bit

[000, 100, 101, 001, 010, 110, 111, 011]

finally

[000, 001, 010, 011, 100, 101, 110, 111] =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

[0, 5, 2, 7, 1, 3, 6, 4] =⇒ [000, 101, 010, 111, 001, 011, 110, 100]

group least significant bit

[000, 010, 110, 100, 101, 111, 001, 011]

move to next bit

[000, 100, 101, 001, 010, 110, 111, 011]

finally

[000, 001, 010, 011, 100, 101, 110, 111] =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

[0, 5, 2, 7, 1, 3, 6, 4] =⇒ [000, 101, 010, 111, 001, 011, 110, 100]

group least significant bit

[000, 010, 110, 100, 101, 111, 001, 011]

move to next bit

[000, 100, 101, 001, 010, 110, 111, 011]

finally

[000, 001, 010, 011, 100, 101, 110, 111] =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Underlying Primitives

Work Complexity of Radix Sort is O(kn) where k is number of
bits

Grouping bits is a compact algorithm

Predicate (i&1)==0 (or the opposite)

Exclusive scan over the predicate to give scatter addresses of
zero bit

Then (inclusive) scan over the one bit predicates added with
the last address of zero bits

This algorithm can be optimized by increasing the number of
bits per compaction (more subsets)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Underlying Primitives

Work Complexity of Radix Sort is O(kn) where k is number of
bits

Grouping bits is a compact algorithm

Predicate (i&1)==0 (or the opposite)

Exclusive scan over the predicate to give scatter addresses of
zero bit

Then (inclusive) scan over the one bit predicates added with
the last address of zero bits

This algorithm can be optimized by increasing the number of
bits per compaction (more subsets)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Underlying Primitives

Work Complexity of Radix Sort is O(kn) where k is number of
bits

Grouping bits is a compact algorithm

Predicate (i&1)==0 (or the opposite)

Exclusive scan over the predicate to give scatter addresses of
zero bit

Then (inclusive) scan over the one bit predicates added with
the last address of zero bits

This algorithm can be optimized by increasing the number of
bits per compaction (more subsets)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Underlying Primitives

Work Complexity of Radix Sort is O(kn) where k is number of
bits

Grouping bits is a compact algorithm

Predicate (i&1)==0 (or the opposite)

Exclusive scan over the predicate to give scatter addresses of
zero bit

Then (inclusive) scan over the one bit predicates added with
the last address of zero bits

This algorithm can be optimized by increasing the number of
bits per compaction (more subsets)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Underlying Primitives

Work Complexity of Radix Sort is O(kn) where k is number of
bits

Grouping bits is a compact algorithm

Predicate (i&1)==0 (or the opposite)

Exclusive scan over the predicate to give scatter addresses of
zero bit

Then (inclusive) scan over the one bit predicates added with
the last address of zero bits

This algorithm can be optimized by increasing the number of
bits per compaction (more subsets)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Underlying Primitives

Work Complexity of Radix Sort is O(kn) where k is number of
bits

Grouping bits is a compact algorithm

Predicate (i&1)==0 (or the opposite)

Exclusive scan over the predicate to give scatter addresses of
zero bit

Then (inclusive) scan over the one bit predicates added with
the last address of zero bits

This algorithm can be optimized by increasing the number of
bits per compaction (more subsets)

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

CUDA Example

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sparse Matrices

Sparse Matrices are Matrices with a majority of entries with
value 0.

Dense Matrices are Matrices with little to no 0 entries

We have done Dense Matrix-vector multiplication ≈ O(N2)
operations

If we can leverage sparsity, we save computation.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sparse Matrices

Sparse Matrices are Matrices with a majority of entries with
value 0.

Dense Matrices are Matrices with little to no 0 entries

We have done Dense Matrix-vector multiplication ≈ O(N2)
operations

If we can leverage sparsity, we save computation.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Sparse Matrices

Sparse Matrices are Matrices with a majority of entries with
value 0.

Dense Matrices are Matrices with little to no 0 entries

We have done Dense Matrix-vector multiplication ≈ O(N2)
operations

If we can leverage sparsity, we save computation.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Types of Sparse Matrix Representations

Dictionary of Keys (DOK)

Dictionary that maps row, column pairs to the value of the
entry

List of Lists (LIL)

LIL Stores one list per row, containing a column index and
matrix entry

Coordinate List (COO)

Stores a list (row,column, value) tuples of nonzero entries

Compressed Sparse Row (CSR, ”Yale Format)

Represents the matrix by 3 one dimensional arrays
Value array
Column index
Row pointer

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Types of Sparse Matrix Representations

Dictionary of Keys (DOK)

Dictionary that maps row, column pairs to the value of the
entry

List of Lists (LIL)

LIL Stores one list per row, containing a column index and
matrix entry

Coordinate List (COO)

Stores a list (row,column, value) tuples of nonzero entries

Compressed Sparse Row (CSR, ”Yale Format)

Represents the matrix by 3 one dimensional arrays
Value array
Column index
Row pointer

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Types of Sparse Matrix Representations

Dictionary of Keys (DOK)

Dictionary that maps row, column pairs to the value of the
entry

List of Lists (LIL)

LIL Stores one list per row, containing a column index and
matrix entry

Coordinate List (COO)

Stores a list (row,column, value) tuples of nonzero entries

Compressed Sparse Row (CSR, ”Yale Format)

Represents the matrix by 3 one dimensional arrays
Value array
Column index
Row pointer

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Types of Sparse Matrix Representations

Dictionary of Keys (DOK)

Dictionary that maps row, column pairs to the value of the
entry

List of Lists (LIL)

LIL Stores one list per row, containing a column index and
matrix entry

Coordinate List (COO)

Stores a list (row,column, value) tuples of nonzero entries

Compressed Sparse Row (CSR, ”Yale Format)

Represents the matrix by 3 one dimensional arrays
Value array
Column index
Row pointer

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

(CSR Format)

Value Array contains non-zero values

Column index contains the column index of the non-zero
values

The row pointer array contains the compressed index of the
value that starts a new row

Row Pointer contains M + 1 entries, defined as R[0] = 0,
R[i] = R[I − 1]+ # of nonzero elements in row i − 1

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

(CSR Format)

Value Array contains non-zero values

Column index contains the column index of the non-zero
values

The row pointer array contains the compressed index of the
value that starts a new row

Row Pointer contains M + 1 entries, defined as R[0] = 0,
R[i] = R[I − 1]+ # of nonzero elements in row i − 1

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

(CSR Format)

Value Array contains non-zero values

Column index contains the column index of the non-zero
values

The row pointer array contains the compressed index of the
value that starts a new row

Row Pointer contains M + 1 entries, defined as R[0] = 0,
R[i] = R[I − 1]+ # of nonzero elements in row i − 1

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Example

A =


0 0 0 0
5 8 0 0
0 0 3 0
0 6 0 0



Then the CSR format is

v = [5, 8, 3, 6]

c = [0, 1, 2, 1]

r = [0, 0, 2, 3, 4]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Example

A =


0 0 0 0
5 8 0 0
0 0 3 0
0 6 0 0


Then the CSR format is

v = [5, 8, 3, 6]

c = [0, 1, 2, 1]

r = [0, 0, 2, 3, 4]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV

Best Use of CSR format is Sparse Matrix Dense Vector
multiplication (SpMV)

1 Create a segmented representation of matrix from value and
row pointer vectors

2 Gather vector values using column indices

3 Pairwise multiply 1 and 2

4 Inclusive segmented sum scan on 3

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV

Best Use of CSR format is Sparse Matrix Dense Vector
multiplication (SpMV)

1 Create a segmented representation of matrix from value and
row pointer vectors

2 Gather vector values using column indices

3 Pairwise multiply 1 and 2

4 Inclusive segmented sum scan on 3

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example

Suppose we wish to do a 0 b
c d e
0 0 f

x
y
z



Value vector
v = [a, b, c , d , e, f]

Column
c = [0, 2, 0, 1, 2, 2]

Rowptr
rp = [0, 0, 2, 5]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example

Suppose we wish to do a 0 b
c d e
0 0 f

x
y
z


Value vector

v = [a, b, c , d , e, f]

Column
c = [0, 2, 0, 1, 2, 2]

Rowptr
rp = [0, 0, 2, 5]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example

Suppose we wish to do a 0 b
c d e
0 0 f

x
y
z


Value vector

v = [a, b, c , d , e, f]

Column
c = [0, 2, 0, 1, 2, 2]

Rowptr
rp = [0, 0, 2, 5]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example

Suppose we wish to do a 0 b
c d e
0 0 f

x
y
z


Value vector

v = [a, b, c , d , e, f]

Column
c = [0, 2, 0, 1, 2, 2]

Rowptr
rp = [0, 0, 2, 5]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example Continued

1 Segmented representation

[a, b|c , d , e|f]

2 vector values using column

[x , z , x , y , z , z]

3 Pairwise multiplication

[ax , bz |cx , dy , ez |fz]

4 Segmented scan

[ax + bz |cx + dy + ez |fz]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example Continued

1 Segmented representation

[a, b|c , d , e|f]

2 vector values using column

[x , z , x , y , z , z]

3 Pairwise multiplication

[ax , bz |cx , dy , ez |fz]

4 Segmented scan

[ax + bz |cx + dy + ez |fz]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

SpMV Example Continued

1 Segmented representation

[a, b|c , d , e|f]

2 vector values using column

[x , z , x , y , z , z]

3 Pairwise multiplication

[ax , bz |cx , dy , ez |fz]

4 Segmented scan

[ax + bz |cx + dy + ez |fz]

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

a 0 b
c d e
0 0 f

x
y
z

 =

ax + 0y + bz
cx + dy + ez
0x + 0y + fz


In this simple case we save 3 multiplications and 3 adds. On large
scale matrices the savings will be more substantial.

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

CUDA Example

0 200 400 600 800 1000

0

200

400

600

800

1000

Multiplied by a vector of 1s of size 1024

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Kernel

Steven Reeves GPU 6

Histogram
Segmented Scan

Sort
Sparse Matrix Vector Product

Timing vs Dense MatVec

Steven Reeves GPU 6

	Histogram
	Atomics
	Generating Color Distributions from an image

	Segmented Scan
	Sort
	Sparse Matrix Vector Product

