AM 148 Lecture 6

Steven Reeves

University of California, Santa Cruz
sireeves@ucsc.edu
May 3, 2018

Overview

(1) Histogram

- Atomics
- Generating Color Distributions from an image
(2) Segmented Scan
(3) Sort

4 Sparse Matrix Vector Product

What is a Histogram?

- Histogram gives a representation of the distribution of numerical data

What is a Histogram?

- Histogram gives a representation of the distribution of numerical data
- Its an estimate of the true PDF

What is a Histogram?

- Histogram gives a representation of the distribution of numerical data
- Its an estimate of the true PDF
- Based on binning
- Algorithm classifies data based on a bin and collects the binned data

How can we make one?

A serial implementation is straightforward

```
void histogram(unsigned int *histo, type *measurements, int
    bin_count, int array_length)
            for(int i = 0; i < bin_count; i++)
            histo[i] = 0;
            for(int i = 0; i <array_length; i++)
                        histo[computeBin(measurements[i])]++;
```

$\}$

Here your data could be integers, floats, or strings e.g. "Green", "Blue", etc

First Try Parallel Histogram

```
_-global__ void first_hist(unsigned int *histo, type *data,
    int n)
{
    int tid = threadIdx.x + blockDim.x*blockIdx.x;
        if(tid > n)
        return;
    histo[computeBin(data[tid])]++;
//Where computeBin is a __device__ function!
}
```


Why didn't this work?

- The source of our issues is with the d_bins[myBin]++ line

Why didn't this work?

- The source of our issues is with the d_bins[myBin]++ line
- What is going on with this line?
(1) Read bin Value from global memory to a register
(2) Increment Bin Value
(3) Write Bin Value from register to global memory

Why didn't this work?

- The source of our issues is with the d_bins[myBin]++ line
- What is going on with this line?
(1) Read bin Value from global memory to a register
(2) Increment Bin Value
(3) Write Bin Value from register to global memory
- Race condition!

Fixing the issue

- Atomics are built in CUDA pragmas that serialize memory transactions/operations
- Locks a locale in memory so that no other thread can read/write to it until current thread is done
- We'll use atomicAdd

Issue with Atomics

- Serialized access to memory location

Issue with Atomics

- Serialized access to memory location
- Creates a performance bottleneck

Thought experiment

Lets suppose we have 1 million measurements which we wish to create a histogram for. Using the atomic method which will be fastest?

Thought experiment

Lets suppose we have 1 million measurements which we wish to create a histogram for. Using the atomic method which will be fastest?
(1) A histogram with 10 bins

Thought experiment

Lets suppose we have 1 million measurements which we wish to create a histogram for. Using the atomic method which will be fastest?
(1) A histogram with 10 bins
(2) A histogram with 100 bins

Thought experiment

Lets suppose we have 1 million measurements which we wish to create a histogram for. Using the atomic method which will be fastest?
(1) A histogram with 10 bins
(2) A histogram with 100 bins
(3) A histogram with 1000 bins

A Shared Memory Approach

- Create block local histogram
- Use atomics

A Shared Memory Approach

- Create block local histogram
- Use atomics
- Combines block local histograms into global histogram

Application of Histogram

- Generating Color distributions of an image

Application of Histogram

- Generating Color distributions of an image
- Generating frequency/probability distributions from raw data

Code

Segmented Scan

- Sometimes we don't wish to do a full scan on an array

Segmented Scan

- Sometimes we don't wish to do a full scan on an array
- Launching many separate scans is inefficient

Segmented Scan

- Sometimes we don't wish to do a full scan on an array
- Launching many separate scans is inefficient
- Combine Arrays as segments, use a flagging array to mark segments.

Exclusive sum scan:

$$
(1,2,3,4,5,6,7,8,) \Longrightarrow(0,1,3,6,10,15,21,28)
$$

Exclusive sum scan:

$$
\begin{aligned}
(1,2,3,4,5,6,7,8,) & \Longrightarrow(0,1,3,6,10,15,21,28) \\
(1,2|3,4,5| 6,7,8) & \Longrightarrow(0,1|0,3,7| 0,6,13)
\end{aligned}
$$

using

$$
(1,0,1,0,0,1,0,0)
$$

Compact

Before we begin a sort, let's talk about an algorithm called compact

Compact

Before we begin a sort, let's talk about an algorithm called compact

- Compact is an algorithm to partition data

Compact

Before we begin a sort, let's talk about an algorithm called compact

- Compact is an algorithm to partition data
- Input data \rightarrow smaller partition of input data
- Compacting the larging input set into something smaller

Compact

Before we begin a sort, let's talk about an algorithm called compact

- Compact is an algorithm to partition data
- Input data \rightarrow smaller partition of input data
- Compacting the larging input set into something smaller
- If we only want to do computation on a subset of data

Compact Continued

- Input

$$
\left[S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, \ldots\right]
$$

Compact Continued

- Input

$$
\left[S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, \ldots\right]
$$

- Predicate (is my index even for example)

$$
[T, F, T, F, T, \ldots]
$$

Compact Continued

- Input

$$
\left[S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, \ldots\right]
$$

- Predicate (is my index even for example)

$$
[T, F, T, F, T, \ldots]
$$

- Output

$$
S_{0}, S_{2}, S_{4}, \ldots
$$

Compact Continued

- Input

$$
\left[S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, \ldots\right]
$$

- Predicate (is my index even for example)

$$
[T, F, T, F, T, \ldots]
$$

- Output

$$
S_{0}, S_{2}, S_{4}, \ldots
$$

- To generate the output we need to compute the scatter address of each output element

Compact In Parallel

- To Compact in parallel we need to compute scatter addresses

Compact In Parallel

- To Compact in parallel we need to compute scatter addresses
- Given this set of predicates

$$
[T, F, F, T, T, F, T, F]
$$

- we compute addresses

$$
[0-,-, 1,2,-, 3,-]
$$

Compact In Parallel

- To Compact in parallel we need to compute scatter addresses
- Given this set of predicates

$$
[T, F, F, T, T, F, T, F]
$$

- we compute addresses

$$
[0-,-, 1,2,-, 3,-]
$$

- Change predicates

$$
[1,0,0,1,1,0,1,0]
$$

And generate

$$
[0,1,1,1,2,3,3,4]
$$

Compact In Parallel

- To Compact in parallel we need to compute scatter addresses
- Given this set of predicates

$$
[T, F, F, T, T, F, T, F]
$$

- we compute addresses

$$
[0-,-, 1,2,-, 3,-]
$$

- Change predicates

$$
[1,0,0,1,1,0,1,0]
$$

And generate

$$
[0,1,1,1,2,3,3,4]
$$

- This is a Scan operation!

Sorting an array

- Most sorts are serial algorithms!

Sorting an array

- Most sorts are serial algorithms!
- We need to find efficient Parallel Algoirthms!
- Keep Hardware busy (lots of threads)

Sorting an array

- Most sorts are serial algorithms!
- We need to find efficient Parallel Algoirthms!
- Keep Hardware busy (lots of threads)
- Limit thread divergence

Sorting an array

- Most sorts are serial algorithms!
- We need to find efficient Parallel Algoirthms!
- Keep Hardware busy (lots of threads)
- Limit thread divergence
- Prefer Coalesced Memory Access

Radix Sort

Radix sort relies on sorting using the binary notation of a number. Here are a number of steps for a basic Radix sort algorithm:
(1) Start with least signicant bit

Radix Sort

Radix sort relies on sorting using the binary notation of a number. Here are a number of steps for a basic Radix sort algorithm:
(1) Start with least signicant bit
(2) Split Input into 2 sets based on bit, otherwise preserve order

Radix Sort

Radix sort relies on sorting using the binary notation of a number. Here are a number of steps for a basic Radix sort algorithm:
(1) Start with least signicant bit
(2) Split Input into 2 sets based on bit, otherwise preserve order
(3) Move to next most significant bit, rinse and repeat.

Radix Sort Example

Lets suppose we have the following array of unsigned integers.
$[0,5,2,7,1,3,6,4] \Longrightarrow[000,101,010,111,001,011,110,100]$

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

$$
[0,5,2,7,1,3,6,4] \Longrightarrow[000,101,010,111,001,011,110,100]
$$

group least significant bit
[000, 010, 110, 100, 101, 111, 001, 011]

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

$$
[0,5,2,7,1,3,6,4] \Longrightarrow[000,101,010,111,001,011,110,100]
$$

group least significant bit

$$
[000,010,110,100,101,111,001,011]
$$

move to next bit

$$
[000,100,101,001,010,110,111,011]
$$

Radix Sort Example

Lets suppose we have the following array of unsigned integers.

$$
[0,5,2,7,1,3,6,4] \Longrightarrow[000,101,010,111,001,011,110,100]
$$

group least significant bit

$$
[000,010,110,100,101,111,001,011]
$$

move to next bit

$$
[000,100,101,001,010,110,111,011]
$$

finally
$[000,001,010,011,100,101,110,111] \Longrightarrow[0,1,2,3,4,5,6,7]$

Underlying Primitives

- Work Complexity of Radix Sort is $\mathcal{O}(k n)$ where k is number of bits

Underlying Primitives

- Work Complexity of Radix Sort is $\mathcal{O}(k n)$ where k is number of bits
- Grouping bits is a compact algorithm

Underlying Primitives

- Work Complexity of Radix Sort is $\mathcal{O}(k n)$ where k is number of bits
- Grouping bits is a compact algorithm
- Predicate (i\&1)==0 (or the opposite)

Underlying Primitives

- Work Complexity of Radix Sort is $\mathcal{O}(k n)$ where k is number of bits
- Grouping bits is a compact algorithm
- Predicate (i\&1)==0 (or the opposite)
- Exclusive scan over the predicate to give scatter addresses of zero bit

Underlying Primitives

- Work Complexity of Radix Sort is $\mathcal{O}(k n)$ where k is number of bits
- Grouping bits is a compact algorithm
- Predicate (i\&1)==0 (or the opposite)
- Exclusive scan over the predicate to give scatter addresses of zero bit
- Then (inclusive) scan over the one bit predicates added with the last address of zero bits

Underlying Primitives

- Work Complexity of Radix Sort is $\mathcal{O}(k n)$ where k is number of bits
- Grouping bits is a compact algorithm
- Predicate (i\&1)==0 (or the opposite)
- Exclusive scan over the predicate to give scatter addresses of zero bit
- Then (inclusive) scan over the one bit predicates added with the last address of zero bits
- This algorithm can be optimized by increasing the number of bits per compaction (more subsets)

CUDA Example

Sparse Matrices

- Sparse Matrices are Matrices with a majority of entries with value 0.
- Dense Matrices are Matrices with little to no 0 entries

Sparse Matrices

- Sparse Matrices are Matrices with a majority of entries with value 0.
- Dense Matrices are Matrices with little to no 0 entries
- We have done Dense Matrix-vector multiplication $\approx \mathcal{O}\left(N^{2}\right)$ operations

Sparse Matrices

- Sparse Matrices are Matrices with a majority of entries with value 0.
- Dense Matrices are Matrices with little to no 0 entries
- We have done Dense Matrix-vector multiplication $\approx \mathcal{O}\left(N^{2}\right)$ operations
- If we can leverage sparsity, we save computation.

Types of Sparse Matrix Representations

- Dictionary of Keys (DOK)
- Dictionary that maps row, column pairs to the value of the entry

Types of Sparse Matrix Representations

- Dictionary of Keys (DOK)
- Dictionary that maps row, column pairs to the value of the entry
- List of Lists (LIL)
- LIL Stores one list per row, containing a column index and matrix entry

Types of Sparse Matrix Representations

- Dictionary of Keys (DOK)
- Dictionary that maps row, column pairs to the value of the entry
- List of Lists (LIL)
- LIL Stores one list per row, containing a column index and matrix entry
- Coordinate List (COO)
- Stores a list (row,column, value) tuples of nonzero entries

Types of Sparse Matrix Representations

- Dictionary of Keys (DOK)
- Dictionary that maps row, column pairs to the value of the entry
- List of Lists (LIL)
- LIL Stores one list per row, containing a column index and matrix entry
- Coordinate List (COO)
- Stores a list (row,column, value) tuples of nonzero entries
- Compressed Sparse Row (CSR, "Yale Format)
- Represents the matrix by 3 one dimensional arrays
- Value array
- Column index
- Row pointer
(CSR Format)
- Value Array contains non-zero values
(CSR Format)
- Value Array contains non-zero values
- Column index contains the column index of the non-zero values
(CSR Format)
- Value Array contains non-zero values
- Column index contains the column index of the non-zero values
- The row pointer array contains the compressed index of the value that starts a new row
- Row Pointer contains $M+1$ entries, defined as $R[0]=0$, $R[i]=R[I-1]+\#$ of nonzero elements in row $i-1$

Example

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
5 & 8 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 6 & 0 & 0
\end{array}\right)
$$

Example

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
5 & 8 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 6 & 0 & 0
\end{array}\right)
$$

Then the CSR format is

$$
\begin{gathered}
\mathbf{v}=[5,8,3,6] \\
\mathbf{c}=[0,1,2,1] \\
\mathbf{r}=[0,0,2,3,4]
\end{gathered}
$$

SpMV

- Best Use of CSR format is Sparse Matrix Dense Vector multiplication (SpMV)

SpMV

- Best Use of CSR format is Sparse Matrix Dense Vector multiplication (SpMV)
(1) Create a segmented representation of matrix from value and row pointer vectors
(2) Gather vector values using column indices
(3) Pairwise multiply 1 and 2
(9) Inclusive segmented sum scan on 3

SpMV Example

Suppose we wish to do

$$
\left(\begin{array}{lll}
a & 0 & b \\
c & d & e \\
0 & 0 & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

SpMV Example

Suppose we wish to do

$$
\left(\begin{array}{lll}
a & 0 & b \\
c & d & e \\
0 & 0 & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Value vector

$$
\mathbf{v}=[a, b, c, d, e, f]
$$

SpMV Example

Suppose we wish to do

$$
\left(\begin{array}{lll}
a & 0 & b \\
c & d & e \\
0 & 0 & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Value vector

$$
\mathbf{v}=[a, b, c, d, e, f]
$$

- Column

$$
\mathbf{c}=[0,2,0,1,2,2]
$$

SpMV Example

Suppose we wish to do

$$
\left(\begin{array}{lll}
a & 0 & b \\
c & d & e \\
0 & 0 & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Value vector

$$
\mathbf{v}=[a, b, c, d, e, f]
$$

- Column

$$
\mathbf{c}=[0,2,0,1,2,2]
$$

- Rowptr

$$
\mathbf{r p}=[0,0,2,5]
$$

SpMV Example Continued

(1) Segmented representation

$$
[a, b|c, d, e| f]
$$

SpMV Example Continued

(1) Segmented representation

$$
[a, b|c, d, e| f]
$$

(2) vector values using column

$$
[x, z, x, y, z, z]
$$

SpMV Example Continued

(1) Segmented representation

$$
[a, b|c, d, e| f]
$$

(2) vector values using column

$$
[x, z, x, y, z, z]
$$

(3) Pairwise multiplication

$$
[a x, b z|c x, d y, e z| f z]
$$

(1) Segmented scan

$$
[a x+b z|c x+d y+e z| f z]
$$

$$
\left(\begin{array}{lll}
a & 0 & b \\
c & d & e \\
0 & 0 & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a x+\theta y+b z \\
c x+d y+e z \\
\theta x+\theta y+f z
\end{array}\right)
$$

In this simple case we save 3 multiplications and 3 adds. On large scale matrices the savings will be more substantial.

CUDA Example

Multiplied by a vector of 1 s of size 1024

Kernel

Timing vs Dense MatVec

